Abstract

Post-Traumatic Stress Disorder (PTSD) is a chronic condition that occurs in response to a traumatic event, and consequently, enhances the threat sensitivity. Rho/ROCK signaling has been implicated in the consolidation of fear memory, stress, depression, anxiety, and traumatic brain injury. However, its role in post-traumatic stress disorder remains elusive. Therefore, the present study was designed to explore the role of fasudil, a Rho/ROCK inhibitor, a mouse model of PTSD. Mice were subjected to underwater trauma stress followed by three situational reminders. Underwater trauma (UWT) significantly increased the freezing behavior, a marker of the formation of aversive memory, in response to situational reminders on the 3rd, 7th, and 14th days, suggesting the significant development of PTSD. Trauma and situational reminders were also associated with significant changes in behavioral parameters in open field, social interaction and actophotometer tests, along with a reduction in serum corticosterone levels. Fasudil (10 and 15 mg/kg) and sertraline (15 mg/kg), a standard drug for PTSD, significantly decreased the freezing behaviour in response to situational reminders, suggesting the inhibition of the formation of aversive fear memory. However, fasudil and sertraline did not modulate normal memory functions, as assessed on elevated plus maze test, before subjecting mice to traumatic stress. Treatment with fasudil and sertraline significantly restored the behavioral changes and normalized the corticosterone levels. Fasudil-mediated blockade of the Rho/ROCK pathway may be responsible for blocking the formation of aversive memory during the traumatic event, which may be manifested in form of decreased contextual fear response during situational reminders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call