Abstract

ABSTRACTTo address concern of the dispersion property of hydrophilic drugs of excess dose loaded in a hydrophobic poly(lactic acid) (PLA) matrix, this work developed a PLA and PLA‐b‐polyethylene glycol (PEG) composite scaffold ( ) and studied its carrier properties for aspirin as a model hydrophilic drug. The porous functional scaffolds were prepared from PLA and PLA‐b‐PEG solutions with the dose of 5, 10, and 15 wt % aspirin preloaded. The products and control samples of pure PLA with the same loading amount for comparison were characterized by scanning electron microscopy and X‐ray diffraction to examine the miscibility and porous structure. Rapid degradations in a strongly basic solution were performed to determine the actual loading amount and the encapsulation ratio. The in vitro release in phosphate buffer saline (PBS) at 37.5 °C indicated that the addition of amphiphilic block polymer may efficiently enhance the dispersion property and stabilize the release of hydrophilic drugs, especially with a high loading dose. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44489.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.