Abstract

This paper deals with tool wear in milling operation using carbide tools. The main purpose of this work is to define a model-based procedure for forecasting tool-wear progression during cutting operation by using machining simulation. Firstly, a multi-axis machining simulation algorithm is proposed based on DEXEL model and local area update method. NC milling machining process simulation software NCToolWearSim is realized by using Visual C++ and OpenGL. The developed process simulation software is used to simulate the cutting process. Secondly, tool-wear simulation algorithm in the machining process is presented with tool-wear model and machining simulation algorithm and is implemented into the machining simulation software NCToolWearSim in order to evaluate the tool wear and to update the tool geometry. The tool-wear value is estimated according to the established tool-wear model from experienced tool-wear data. Thus, tool-wear progression can be visualized in milling operation by using NCToolWearSim. Finally, experimental tests, performed milling integral wheel with carbide tools, were used to calibrate and validate the correctness of tool-wear simulation process based on the tool-wear model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.