Abstract

Abstract In the present study, AA 2024-T351 plates with a thickness of 6 mm were joined using the friction stir welding technique with three different tool rotational speeds and two different pin profiles. Microstructural features and mechanical properties of welded joints were investigated. The grains in recrystallized regions along the stir zone were observed to be almost with invariable sizes. The grain size was revealed to increase with the increase in tool rotational speed. The average grain size was observed to dramatically increase from 2.3 μm to 5.6 μm for welded joints produced with pentagonal shaped pin. All the welded joints were observed to contain defects; the presence of defects exhibited a negative effect on the tensile properties of the welded joint. Most of the defects were observed to localize at the root region of joints. The joint, welded with the tool rotational speed of 250 rpm using pentagonal shaped pin, exhibited ultimate tensile strength with a value of 365 MPa. The ultimate tensile strength of welded joints was found to be higher with the decrease in the tool rotational speed. The welding efficiency of joints was compared with the ultimate tensile strength of base metal; notably, welding efficiency values between 46 % and 80 % were achieved. Microstructural characterizations revealed that Al2Cu (θ phase), Al2CuMg (S phase), and AlCuFeMnSi, Al7Cu2Fe intermetallic particles were dispersed in the stir zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.