Abstract

Thermoplastic composite materials are emerging rapidly due to the flexibility of attaining customized mechanical and melt flow properties. Due to high ductility, toughness, recyclability, and thermal and electrical conductivity, there is ample scope of using copper particles in thermoplastics for 3d printing applications. In the present study, an attempt was made to investigate the Melt Flow Index (MFI), tensile strength, and electrical and thermal conductivity of nylon 6 and ABS (acrylonitrile butadiene styrene) thermoplastics reinforced with copper particles. Thus, the experiments were conducted by adding different-sized copper particles (100 mesh, 200 mesh, and 400 mesh) in variable compositions (0% to 10%) to ABS and nylon 6 matrix. The impact of single, double, and triple particle-sized copper particles on MFI was experimentally investigated followed by FTIR and SEM analysis. Also, the tensile, electrical, and thermal conductivity testing were done on filament made by different compositions. In general, higher fluidity and mechanical strength were obtained while using smaller particles even with higher concentrations (up to 8%) due to improved bonding strength and adhesion between the molecular chains. Moreover, thermal and electrical conductivity was improved with an increase in concentration of copper particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.