Abstract

The tangential jet-induced swirling flow is a highly efficient technology for enhancing heat transfer. This paper explores the application of swirling flow of an airfoil/aero-engine in a hot air anti-icing chamber, aiming to improve the anti-icing performance and achieve a more uniform temperature on the surface. A series of numerical computations adopting the SST k − ω turbulent model was carried out to obtain the internal flow and heat transfer characteristics, as well as the surface temperature distributions, considering water evaporation and solid heat conduction. Three jet arrangements, including impingement jets, offset jets, and swirl jets, were studied and compared, which evidently showed that the swirling effect was helpful to elevate the internal heat transfer. Compared to the impingement jets at the Reynolds number of 40,000, the Nusselt number with the offset jets is increased by 19.5%, while the corresponding Nusselt number of the swirl jets is augmented by 44.3%. The swirling flow significantly elevates the swirl number within the internal chamber, intensifying the vortex strength near the wall and increasing the circumferential velocity, which also results in an augmentation of internal pressure loss. By adopting the swirling internal flow, the temperature distribution on the anti-icing surface is more uniform and is increased by up to about 4.1 K in the leading edge when the internal-to-external temperature difference is 80 K. Simultaneously, the heat absorption of water evaporation and the matches between the internal heat transfer and external icing load are of particular importance to determine the anti-icing performance, and this has been discussed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.