Abstract

In the present work effect of chitosan on microcrystal formulation for dissolution enhancement of oxcarbazepine using controlled crystallization technique coupled with spray drying was explored. The work was extended for exploration of simplified approach for stable particle size reduction. The study was performed with an experimental design approach i. e. a fractional factorial design of resolution 5 (with all 2 factor interaction) for the screening of predefined independent variables drug concentration, chitosan concentration, feed rate, inlet temperature and percent aspiration for spray drying. Whereas percent drug dissolved, wettability time, flowability in terms of angle of repose and particle size were designated as response variables. Resultant models were analyzed using multiple linear regression analysis, which generated equation to plot response surface curves along with desirability function. Results showed that chitosan concentration had significant effect on dissolution enhancement of oxcarbazepine at a level of 2% w/v. Increase in drug concentration showed decreased dissolution rate however on particle size it did not show statistically significant effect. Topographical characterization was carried out by SEM which showed that feed rate, percent aspiration and inlet temperature had significant effect on particle morphology. For deriving optimized formulation results were analyzed using desirability function for the maximum percent drug dissolved and least drug polymer matrix particle size. DSC studies showed that drug was molecularly associated with chitosan matrix or particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call