Abstract

Chatter is a well known self excited-vibration between the tool and the workpiece. In this paper, Artificial Neural Network (ANN) has been used to predict the chatter-free vibrations Stability Lobe Diagram (SLD) for milling of AISI 1020 Steel, as it requires less computation time and highly flexible. The occurrence of chatter for a particular combination of machining conditions is easily predicted using SLD plot. The SLD plot is validated using Fast Fourier Transform (FFT) analyser in a Universal Milling Machine. The results have shown a good agreement between chatter prediction and experimental values. The Nyquist Criterion is applied for studying the dynamic stability of the equivalent elastic system process. The result obtained from polar plots helps the designer to design the machine tool system having a minimum stiffness value of 4200 KN/mm in order to maintain the stability. Dynamic analysis has been performed using FEA to find the maximum deflection and stresses of cutter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.