Abstract

Purpose The purpose of this paper is to fabricate the scaffolds with different pore architectures using additive manufacturing and analyze its mechanical and biological properties for bone tissue engineering applications. Design/methodology/approach The polylactic acid (PLA)/composite filament were fabricated through single screw extrusion and scaffolds were printed with four different pore architectures, i.e. circle, square, triangle and parallelogram with fused deposition modelling. Afterwards, scaffolds were coated with hydroxyapatite (HA) using dip coating technique. Various physical and thermo-mechanical tests have been conducted to confirm the feasibility. Furthermore, the biological tests were conducted with MG63 fibroblast cell lines to investigate the biocompatibility of the developed scaffolds. Findings The scaffolds were successfully printed with different pore architectures. The pore size of the scaffolds was found to be nearly 1,500 µm, and porosity varied between 53% and 63%. The fabricated circular pore architecture resulted in highest average compression strength of 13.7 MPa and modulus of 525 MPa. The characterizations showed the fidelity of the work. After seven days of cell culture, it was observed that the developed composites were non-toxic and supported cellular activities. The coating of HA made the scaffolds bioactive, showing higher wettability, degradation and high cellular responses. Originality/value The research attempts highlight the development of novel biodegradable and biocompatible polymer (PLA)/bioactive ceramic (Al2O3) composite for additive manufacturing with application in the tissue engineering field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.