Abstract

Zinc ion (Zn2+)-doped poly(3-methyl-thiophene)/multi-walled carbon nano tubes (MWCNT) composites (M-PMT-ZN) and poly(3-methyl-thiophene)/MWCNT composites (M-PMT) were synthesized by in situ chemical oxidative polymerization and investigated as electrode material for supercapacitors. The interactions of Zn2+ ions with sulfur sites on the polymer chains were characterized by Fourier transform infrared spectroscopy. The morphology of the nanocomposites was characterized by scanning electron microscopy and high resolution transmission electron microscopy. The electrochemical properties were investigated using cyclic voltammetry, cyclic charging-discharging tests, and electrochemical impedance spectroscopy in a three-electrode system. Use of M-PMT-ZN resulted in a higher specific capacitance of 235 F/g. The specific capacitance retention after 500 cycles on M-PMT-ZN was also higher compared with that of the M-PMT composite. These results indicate that transition metal ion doping enhances the electrochemical properties of the conducting polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.