Abstract

Sol-gel is an excellent antibacterial agent carrier. Different researchers incorporated various antibacterial substances, including silver nitrate (AgNO3), quarternary ammonium chloride (QAC), and titanium dioxide (TiO2) in sol-gel. However, there is limited study on the influence of pH and acid hydrolysis time (ageing) to form sol-gel. Besides, few investigations have been made on the influence of fabric structure and silver nanoparticles (AgNPs) incorporation into fabrics by the sol-gel method. This study also compared the light and heavy fabrics in terms of sol-gel application and the advantages of sol-gel over other AgNPs incorporation methods. The sol-gel-AgNPs incorporated fabric samples were characterized by Ultra Violet Spectroscopy (UV-VIS), X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersion spectroscopy (EDS). For AgNPs synthesis in a green way, we used Calendula arvensis, a Mediterranean weed. This study found, that for sol-gel formation the minimum acid hydrolysis time was 5.30 hours, 6.30 hours, and 8.00 hours at 60 ºC, 25 ºC, and 3 ºC, respectively. After ageing, a minuscule amount of alkaline was needed for gelation. Seven different methods for incorporating AgNPs through sol-gel have been illustrated. The lower molarity of AgNO3, having a more significant portion in the sol-gel solution, had excellent antibacterial activity and wash fastness. Besides, the ex-situ method was better than the in-situ method. Among different types of cotton fabric, lightweight knit fabric showed much better antibacterial activity than heavier twill fabric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call