Abstract

Liquid insulation for high voltage transformer applications based on natural esters derived from abundantly available vegetable oils are becoming popular in recent times. Since these natural ester based oils have environmental advantages and superior thermal performance, electrical utilities are slowly replacing the conventional mineral oils with natural ester based vegetable oils. FR3 oil, which is a soya based natural ester oil with superior dielectric and thermal characteristics, is becoming popular as an alternate insulating medium for high voltage transformers. With recent developments in nanotechnology field, it is possible to enhance the dielectric performance characteristics of natural ester based oils, which is a major constraint for high voltage transformer applications. However few research reports are only available in the area of nanofluids based on natural esters for high voltage insulation applications. In depth analysis and collection of large data base of insulation performance of natural ester based vegetable oils is important to improve the confidence level over nano-fluids based on natural esters. Considering these facts, in the present work, dielectric properties such as breakdown strength, capacitance, tan delta, relative permittivity and volume resistivity of nano-SiO2 modified FR3 oil are investigated at different %wt filler concentrations. From the results, it is observed that the dielectric performance of FR3 oil is significantly improved with the addition of nano-SiO2 filler. Since in recent times FR3 oil is commercially used in many transformers, these results will be useful for enhancing the dielectric strength of high voltage transformers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.