Abstract

This research paper will propose an incentive topic to investigate the accuracy of an adaptive neuro-fuzzy modeling approach of lithium-ion (Li-ion) batteries used in hybrid electric vehicles and electric vehicles. Based on this adaptive neuro-fuzzy inference system (ANFIS) modeling approach, we will show its effectiveness and suitability for modeling the nonlinear dynamics of any process or control system. This new ANFIS modeling approach improves the original nonlinear battery model and an alternative linear autoregressive exogenous input (ARX) polynomial model. The alternative ARX is generated using the least square errors estimation method and is preferred for its simplicity and faster implementation since it uses typical functions from the MATLAB system identification toolbox. The ARX and ANFIS models’ effectiveness is proved by many simulations conducted on attractive MATLAB R2021b and Simulink environments. The simulation results reveal a high model accuracy in battery state of charge (SOC) and terminal voltage. An accurate battery model has a crucial impact on building a very precise adaptive extended Kalman filter (AEKF) SOC estimator. It is considered an appropriate case study of a third-order resistor-capacitor equivalent circuit model (3RC ECM) SAFT-type 6 Ah 11 V nominal voltage of Li-ion battery for simulation purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call