Abstract

Progress in gas-turbine engine (GTE) manufacturing is continuously linked with a rise of operating temperature and stresses of engine gas path elements, especially the turbine parts. More advanced cooling systems, structural materials and thermal barrier coatings (TBC) and other coatings provide the required life and strength reliability of these components. While engines are in use, the necessity arises to repair turbine blades and vanes with a TBC and combustion liners. At the same time, it is difficult to estimate the durability of the turbine blades and combustor components with a TBC and vanes because of the complexity of simulation of the damaging factors acting under service conditions and also because of problems in obtaining the input data required for making such estimations. Therefore, the development of methods for the calculated and experimental investigations thermal barrier coatings, thermophysical and strength properties of TBC and thermal, thermostress state and thermomechanical fatigue engine parts with a TBC is of great importance. While conducting these investigations, the main tasks are the comparative estimation of the design and production (or repair) process solutions and verification of the methods of calculation of the durability of engine parts with a TBC. To provide simulation of loading conditions for the hot engine parts with a TBC under service conditions, the test procedure shall ensure the possibility of cyclic surface heating of the object under testing (simulating its heating in hot gas flow) up to temperatures of 1150 °C and more at heating rates of 150-200 °C/s and subsequent cooling. Also it is desirable to have the possibility for mechanical loading of parts and TBC with a required phase shift between mechanical load and temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call