Abstract

During a severe nuclear accident, the UO2 fuel rods, Zircaloy cladding, guide tubes, absorber and steel structural components inside the reactor pressure vessel overheat and a series of interactions between these elements and the steam atmosphere occur. These produce more heat in addition to the decay heat and result in a liquid corium of oxidic and metallic phases depending on the exact conditions and processes. A major systems resulting from this is the U–Zr–Fe–O system. High-temperature data for this system is important in order to be able to model these interactions. The Joint Research Centre, Institute for Transuranium Elements (JRC-ITU) has been examining the melting ranges for this system over the whole FeO range by means of a specialized laser flash technique that achieves very high temperatures and avoids crucible contamination. The melted zones were examined for their structure, composition and for estimation of the liquidus and solidus temperatures. The results showed that with FeO contents of over 20mol% there was a very large melting range that would permit long liquid cooling times and extend the relocation of fuel material within the reactor pressure vessel. Based on these results, the main phase regimes expected under severe accident conditions could be identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call