Abstract

The infrared (IR) aerosol optical thickness (AOT) spectra of Saharan dust measured during the Portable Infrared Aerosol Transmission Experiment (PIRATE) are reported. Saharan dust optical thickness (extinction) spectra from 8 to 13 μm were obtained using column‐integrated solar transmission measurements in Puerto Rico in July 2005 and Senegal in January and March 2006 (during a dust plume) using a Fourier transform infrared (FTIR) spectrometer. The FTIR measured the solar spectral irradiance in the IR in the presence of Saharan dust, and the AOT was determined by comparing the measured spectra to modeled downwelling spectra without dust for the same atmospheric temperature profile, solar zenith angle, water vapor, and ozone concentrations. The modeled dust‐free spectra are generated using the Santa Barbara Disort Atmospheric Radiative Transfer (SBDART) program. The measured dust AOT is compared with modeled AOT spectra obtained using Mie theory with dust indices of refraction from Volz and Fouquart with assumed lognormal size distributions. When the visible AOT values from nearby Aerosol Robotic Network (AERONET) sensors are compared to the IR AOT values, results from various dust loadings show that the IR dust AOT at 9.5 μm is typically only one third that of the visible (670 nm) dust AOT, but there is some evidence that this ratio could increase for larger dust size distributions. The surface IR dust forcing is determined to be about −0.4 W/m2 by summing the dusty and clear irradiance differences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call