Abstract
With an increasing application of clinching in different industrial fields, the demand for a better understanding of the knowledge of static and dynamic characteristics of the clinched joints is required. In this paper, the clinching process and tensile–shear failure of the clinched joints have been numerically simulated using finite element (FE) method. For validating the numerical simulations, experimental tests on specimens made of aluminium alloy have been carried out. The results obtained from tests agreed fairly well with the computational simulation. Tensile–shear tests were carried out to measure the ultimate tensile–shear strengths of the clinching joints and clinching-bonded hybrid joints. Deformation and failure of joints under tensile–shear loading were studied. The normal hypothesis tests were performed to examine the rationality of the test data. This work was also aimed at evaluating experimentally and comparing the strength and energy absorption of the clinched joints and clinching-bonded hybrid joints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.