Abstract

ABSTRACTThin silver oxide films used as mask layers in super-Resolution Nearfield Structure (super-RENS) disks for high density optical data storage were reactively sputter-deposited and their composition was determined by spectroscopic means. We found that the stoichiometry of the films changed with the oxygen content in the sputtering gas atmosphere. With a stepwise increase in the percentage of O2 from 0 - 100%, the corresponding layers consist of Ag, mixtures of Ag and Ag2O, Ag2O, mixtures of Ag2O and AgO and AgO. Laser activation of such oxidic phase containing deposits results in the decomposition of the material and excitation of strong local plasmons in the remaining silver clusters. This was confirmed by acquiring surface enhanced Raman spectra (SERS) of benzoic acid (BA), copper phthalocyanine (CP) and internal carbon impurities on silver oxide substrates. From this data, we conclude that the sub-wavelength resolution obtained in super-RENS disks is mediated by local surface plasmons on small silver particles forming in the mask layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call