Abstract

Sulfidated nano zero-valent iron supported by activated carbon (S-nZVI/AC) composites were synthesized via liquid phase reduction method, and then they were used for Cr(VI) elimination. Characterization results showed that Fe0 was the main component, besides, iron oxides and iron sulfides were also detected. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed that S-nZVI nanoparticles were homogeneously distributed on the surfaces of AC. The influences of S/Fe ratio, C/Fe ratio, pH value, reaction temperature and co-existed ions (Cl-, SO42-, PO43- and NO3-) on Cr(VI) removal performances were investigated. Furthermore, the corresponding mechanisms were also discussed. The S-nZVI/AC composites exhibited good aging-resistance performances that Cr(VI) removal efficiency still maintained at 83.1% after being sealed in water for seven days, and they also had satisfying cycling stabilities that Cr(VI) removal efficiency only decreased less than 10% after four cycles. The good performances of S-nZVI/AC composites for Cr(VI) removal are attributed to the protection effect of iron sulfides and immobilization effect of AC, making S-nZVI/AC as a promising candidate for Cr(VI) elimination in effluents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call