Abstract

AimsWe investigated the hypothesis that there are interactions between SNPs in folate metabolism pathway genes and environmental risk factors to the etiology of neural tube defects (NTDs). MethodIn 602 Chinese families, 609 aborted fetus tissues or blood samples were collected from NTD individuals, and 1106 parental blood samples were detected as controls. We analyzed 28 SNPs in 12 folate pathway genes. Folate supplementation, gestational diabetes mellitus (GDM) and medicine administration before and during pregnancy were investigated. Case–parental control study and transmission/disequilibrium tests were performed according to environmental cofactor stratification. ResultsAssociation between 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C>T and NTDs was significant in all stratifications (all P<.05), and synergistic effects of no folate supplementation and GDM were shown on NTD occurrence. 5-Methyltetrahydrofolate–homocysteine methyltransferase (MTHM) 501A>G in case of GDM, and betaine–homocysteine methyltransferase (BHMT) 716G>A in case of no folate supplementation significantly associated with NTDs (both P<.05), whereas the two genotypes alone did not significantly associate with NTDs (both P>.05). ConclusionsMTHFR 677C>T genotype, especially in case of no folate supplementation and GDM, promotes NTD occurrence. MTHM 501A>G only in case of GDM, and BHMT 716G>A only in case of no folate supplementation contribute to the etiology of NTDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.