Abstract

The aim of this study was to assess the effectiveness of dual wavelength (2780 nm Er,Cr:YSGG, 940 nm diode) laser in elimination of smear layer comparing it with Er,Cr:YSGG laser in terms of radicular dentin permeability and ultrastructural changes of root canal walls. Fifty-one sound single-rooted extracted teeth were instrumented up to size F4 and divided into three groups: group Co, non-irradiated samples; group A, irradiated with Er,Cr:YSGG laser; group B, irradiated with the dual wavelength laser. Afterward, the roots were made externally impermeable, filled with 2% methylene blue dye, divided horizontally into three segments reflecting the cervical, middle, and apical thirds then examined under microscope. Using analytical software, the root section area and dye penetration area were measured, and then, the percentage of net dye penetration area was calculated. Additionally, scanning electron microscope investigations were accomplished. Analysis of variance (ANOVA) showed significant differences between all groups over the three root thirds. Dye permeation in dual wavelength laser group was significantly higher over the whole root length: cervical, middle, and apical compared to Er,Cr:YSGG laser group and non-irradiated samples (p < 0.001). Scanning electron micrographs of dual wavelength irradiated samples showed a distinctive removal of smear layer with preservation of the annular structure of dentinal tubules. Er,Cr:YSGG laser root canal irradiation produced uneven removal of smear layer, in efficient cleanliness especially in the apical third. There was no sign of melting and carbonization. Within the studied parameters, root canal irradiation with dual wavelength laser increased dentin permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call