Abstract

An experimental and simulation research had been performed to investigate the performance as well as the flow distribution in the cathode flow field in the case of direct methanol fuel cells (DMFCs). The gas was well distributed in serpentine flow field, whereas stagnation of the gas was observed in parallel flow field. These would contribute to the cell performance greatly due to mass transfer effect when the cells start operating. In addition, the durability test of DMFC was drastically affected in parallel flow field due to poor ability to drain flooded water produced electrochemically at cathode and crossover from anode. In addition, pressure drops of different flow fields were also investigated to evaluate their contribution and feasibility as an economic application for DMFC. DMFC with serpentine flow field featuring higher pressure difference resulted in a larger parasitic energy demand. However, the optimal flow field designs are needed to balance the performance and pressure loss to achieve a uniform fluid distribution and simultaneously minimize energy demand for mass transport. Consequently, flow field with grid pattern appears to be the optimal design for the DMFC cathode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.