Abstract

We describe the use of the nonparametric bootstrap to investigate the accuracy of current dipole localization from magnetoencephalography (MEG) studies of event-related neural activity. The bootstrap is well suited to the analysis of event-related MEG data since the experiments are repeated tens or even hundreds of times and averaged to achieve acceptable signal-to-noise ratios (SNRs). The set of repetitions or epochs can be viewed as a set of independent realizations of the brain's response to the experiment. Bootstrap resamples can be generated by sampling with replacement from these epochs and averaging. In this study, we applied the bootstrap resampling technique to MEG data from somatotopic experimental and simulated data. Four fingers of the right and left hand of a healthy subject were electrically stimulated, and about 400 trials per stimulation were recorded and averaged in order to measure the somatotopic mapping of the fingers in the S1 area of the brain. Based on single-trial recordings for each finger we performed 5000 bootstrap resamples. We reconstructed dipoles from these resampled averages using the Recursively Applied and Projected (RAP)-MUSIC source localization algorithm. We also performed a simulation for two dipolar sources with overlapping time courses embedded in realistic background brain activity generated using the prestimulus segments of the somatotopic data. To find correspondences between multiple sources in each bootstrap, sample dipoles with similar time series and forward fields were assumed to represent the same source. These dipoles were then clustered by a Gaussian Mixture Model (GMM) clustering algorithm using their combined normalized time series and topographies as feature vectors. The mean and standard deviation of the dipole position and the dipole time series in each cluster were computed to provide estimates of the accuracy of the reconstructed source locations and time series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.