Abstract

Two analysis methods for time scale and energy balance relevant to flame ignition and stabilization in cavity-stabilized flames are developed. The interaction time of hot product in the recirculation zone of the cavity with the surrounding unburned mixture and the reaction induction time of the mixture are estimated in the time scale method. The energy release from chemical reactions and the energy loss due to species exchange in the recirculation zone are included in the energy balance method. The autoignition and propagation of supersonic ethylene flames in a model supersonic combustor with a cavity is investigated first using highly resolved large eddy simulation. The evolutions of the two time scales are then calculated in the ignition process of the supersonic ethylene flames. It is found that the time scale theory is well valid in the flame propagation and stabilization stages. The rates of energy generation and loss are then analyzed in the cavity. It is found that initially the local energy generation rate is relatively small, resulting in slow net energy accumulation in the cavity. Then the energy generation increases due to the intermittent flame propagation in the cavity, whereas the energy loss oscillates consistently since the burned gas leaves the cavity. Also, energy generation and loss are generally balanced in the cavity and all tend to zero after the flame is globally stabilized. The two methods present the characteristic time scales and energy balancing during the transient ignition process for the first time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.