Abstract
The effects of 800keV Ar ion irradiation on thin nanocrystalline SiC films grown on (100) Si substrates using the pulsed laser deposition (PLD) technique were investigated. On such PLD grown films, which were very dense, flat and smooth, X-ray reflectivity, glancing incidence X-ray diffraction and nanoindentation investigations were easily performed to evaluate changes induced by irradiation on the density, surface roughness, crystalline structure, and mechanical properties. Results indicated that the SiC films retained their crystalline nature, the cubic phase partially transforming into the hexagonal phase, which had a slightly higher lattice parameter then the as-deposited films. Simulations of X-ray reflectivity curves indicated a 3% decrease of the films density after irradiation. Nanoindentation results showed a significant decrease of the hardness and Young's modulus values with respect to those measured on as-deposited films. Raman and X-ray photoelectron spectroscopy investigations found an increase of the CC bonds and a corresponding decrease of the SiC bonds in the irradiated area, which could explain the degradation of mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.