Abstract
In this paper, we describe a general procedure to evaluate the thermodynamics of the interaction between polypeptides and hydrophobic ligands in the presence of aquo-organic solvent mixtures. These studies address experimental requirements for the determination of the linear free energy relationships, derivation of partition coefficients or other extrathermodynamic parameters such as contact areas, or assessment of the conformational changes that may occur when polypeptides or proteins interact with immobilized nonpolar ligands. Not unexpectedly from thermodynamic arguments, the trends and magnitudes of free energy parameters, such as the enthalpy of association, as previously derived in many studies from gradient elution reversed-phase high-performance liquid chromatographic (RP-HPLC) measurements are often different from the data for the same parameters derived from equilibrium binding or microcalorimetric determinations. To reconcile these divergencies and to more closely examine the thermodynamic basis of the interaction of polypeptides with nonpolar ligands, the dependency of the logarithmic capacity factor, ln k', on temperature, T, for several polypeptides (bombesin, beta-endorphin, glucagon) have been investigated using a n-butylsilica and acetonitrile-water or methanol-water mixtures of defined solvent compositions. With low-pH, acetonitrile-water mixtures, the van't Hoff plots, i.e., the plots of ln k' versus 1/T, were nonlinear over the range of T = 278-358 K, although within a narrow temperature range, e.g., from T = 278-308 K, the experimental data for these polypeptides could be approximated by a linear relationship. This nonclassical van't Hoff behavior was associated with interactive processes that involved temperature-dependent enthalpic, entropic, and heat capacity changes. In contrast, with low-pH, methanol-water mixtures, the van't Hoff plots showed dependencies that were essentially linear over the range of T = 278-358 K. The slopes of the van't Hoff plots with acetonitrile-water and methanol-water mixtures at a defined T value and solvent composition were significantly larger than those found for the corresponding experiments carried out under gradient elution RP-HPLC conditions. From these plots of ln k' versus 1/T, the changes in the apparent enthalpy of association (delta H++assoc) and the apparent entropy of association (delta S++assoc) for the interaction of these polypeptides with the solvated n-butyl ligands at different T and solvent compositions have been determined. For these polypeptides, both delta H++assoc and delta S++assoc exhibited linear dependencies on the volume fraction, phi, of the organic solvent over a narrow range of T, but the slopes of these plots were dependent on the T range examined. The dependencies of the slope term, S, and the intercept term, ln ko, derived from the plots of ln k' versus phi as a function of T, have also been investigated. A new relationship linking the S values with delta H++assoc and delta S++assoc as a function of T and phi has been derived and validated. In addition, the relationship between S, delta H++assoc, delta S++assoc, the apparent change in heat capacity, delta C++assoc, and the accessible surface area, delta Atot, of these polypeptides has been examined, thus providing a linkage of these thermodynamic and extrathermodynamic parameters to the partition coefficient, P, and the molecular properties of these polypeptides. The results confirm that entropy-enthalpy compensation effects participate in the interaction of polypeptides with hydrophobic ligands. This investigation has confirmed that the use of solvent-water mixtures of defined composition, rather than the more convenient practice of using gradient elution methods, is essential if thermodynamically consistent values of the binding affinities and partition coefficients are to be quantitatively derived. (ABSTRACT TRUNCATED)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.