Abstract

The geometry of inertial confinement fusion (ICF) capsules makes them susceptible to various types of hydrodynamic instabilities at different stages during an ICF implosion. From the beginnings of ICF research, it has been known that grain-level anisotropy and defects could be a significant source of instability seeding in solid beryllium capsules. We report on experiments conducted at the Trident laser facility [S. H. Batha et al., Rev. Sci. Instrum. 79, 10F305 (2008)] to measure dynamic surface roughening from hard x-ray preheat due to anisotropic thermal expansion. M-band emission from laser-produced gold plasma was used to heat beryllium targets with different amounts of copper doping to temperatures comparable to ICF ignition preheat levels. Dynamic roughening measurements were made on the surface away from the plasma at discrete times up to 8 ns after the beginning of the drive pulse using a surface displacement interferometer with nanometer scale sensitivity. Undoped large-grained targets were measured to roughen between 15 and 50 nm rms. Fine-grained, copper-doped targets were observed to roughen near the sensitivity limit of the interferometer. The results of this work have shed light on the effects of high-Z doping and microstructural refinement on the dynamics of differential thermal expansion and have shown that current ICF capsule designs using beryllium are very effective in reducing preheat related roughening ahead of the first shock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.