Abstract

The rheological characteristics of bovine amniotic fluid have been studied at different shear rates. The viscosity of bovine amniotic fluid at 20°C was found to increase with time at a constant low shear rate during the measurement. Additionally, the viscosity was observed to decrease with increasing shear rate, indicating that a shear thinning behaviour of the fluid was occurring. The log-log plot of shear stress versus shear rate yielded a straight line, consistent with non-Newtonian behaviour of the fluid and characteristic of pseudoplastic liquids. The data of shear stress versus shear rate could be represented by a power law model. The treatment of amniotic fluid with cetylpyridinium chloride (CPC) resulted in the precipitation of a mixture of components, including complex sulphated polysaccharides and extracellular proteoglycans, with the viscosity of the resulting liquid similar to that of water at 20°C. In addition, the viscosity of the CPC-pretreated fluid did not increase with time at constant shear rate and remained constant with the increase in shear rate. The apparent increase in viscosity with time and the shear thinning behaviour of the amniotic fluid can thus be attributed to pseudoplastic liquid behaviour associated with the presence of structurally complex polysaccharides and extracellular proteoglycans. The implications of this fluid viscosity behaviour are discussed in terms of their impact on the operation of packed or expanded (fluidized) chromatographic bed systems when amniotic fluid biofeed-stocks are used as a source of commercially important proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call