Abstract

The factors that control carbon nanotube (CNT) adsorption onto aminopropyl siloxane (APS)-derivatized surfaces were investigated using two distinct types of well-characterized films with significant differences in their detailed structures. Both types of APS films showed a marked increase in CNT adsorption relative to untreated SiO2 surfaces but differed in the amount of CNTs adsorbed. To gain insight into the factors governing adsorption, the surface coverage of the CNTs was monitored as a function of the pH during the deposition, the surfactant used to suspend the CNTs, and the type and amount of salt added to the deposition solution. The adsorption is shown to be governed by electrostatic and VDW forces. In the case of complimentarily charged surfaces, the adsorption is proposed to occur through an ion exchange mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call