Abstract

In this work, a detailed procedure for the development of biomedical implant (SS-316L) by combining fused deposition modeling (FDM), chemical vapor smoothing (CVS), silicon molding (SM) and investment casting (IC) for batch production has been outlined. In spite of being biocompatible and bioactive within the body, the implant must possess good surface quality and dimensional accuracy along with sufficient hardness in order to reduce the wear inside the body. So in this research work, investigations have been made on the surface finish, dimensional accuracy and hardness of the implants by varying two controllable factors of the IC process (drying time of primary coating and mould thickness). The tolerance grades for the selected dimension of the casted implants were within the allowable range as defined in UNI EN 20286-I (1995) standard of ISO. The process capability indices (Cp and Cpk) values greater than 1.33 for the surface hardness and radial dimension indicated that the proposed process is statistically controlled. Further, in order to evaluate the biocompatibility, an in vitro study was conducted to ensure the attachment of mouse embryonic fibroblasts cells (NIH-3T3) to the casted samples. The results of invitro study indicated that samples were capable of supporting cell adhesion and cell proliferation and hence can be used for tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call