Abstract

Six centrosymmetric D–(π–A)3 structural triphenylamine derivatives that can be used as two-photon photopolymerization and optical data storage chromophores, tris[4-(4-pyridylethenyl)phenyl]amine (1), tris[4-(2-pyridylethenyl)phenyl]amine (2), tris(4-cyanoethenylphenyl)amine (3), tris[4-butylacrylatephenyl]amine (4), tris[4-methylacrylatephenyl]amine (5) and tris[4-acrylicethenylphenyl]amine (6), have been successfully synthesized via a triple palladium-catalyzed Heck coupling reaction, and the novel chromophores were fully characterized by elemental analysis, IR, 1H-NMR and ESIMS. The structure for 3 was determined by single crystal X-ray diffraction study. One- and two-photon absorption and fluorescence in various solvents were experimentally investigated. Two-photon initiated polymerization microfabrication and optical data recording experiments were carried out under 780 nm laser radiation, and the possible polymerization mechanism is discussed based on theoretical calculations. All the six chromophores have relatively large two-photon absorption cross-sections, and exhibit optical memory and highly efficient two-photon initiated polymerization abilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call