Abstract
This research aims to investigate the interaction between pulsed ultraviolet (UV) laser beams and transparent PEDOT:PSS/graphene composite films. The laser ablated microstructure on film surfaces provides the electrical isolation and prevents the electrical contact from each location for the projected capacitive touch screen. Before the laser processing, the surface roughness, microhardness, spectrum and cross-sectional view of PEDOT:PSS/graphene composite film were measured by an atomic force microscope, a nanoindenter, a spectrometer and a scanning electron microscope, respectively. The focused UV laser beam was irradiated along line patterns with an overlapping rate of 60% and the applied laser fluences much over the ablation thresholds of 1.27J/cm2 to 3.82J/cm2. The surface morphology, three-dimensional topography, and cross-sectional profile of isolated lines and electrode structures after laser microstructuring were measured by a confocal laser scanning microscope. By increasing the laser fluence from 1.27J/cm2 to 3.82J/cm2, the ablated line widths and depths increased from 12.17±0.24μm to 21±0.37μm and from 190±9nm to 227±15nm, respectively. Moreover, the ablated lines of microstructuring electrodes had a clear and regular ablated edge quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.