Abstract
In this study, models have been developed for predicting health expenditures of Turkey associated with greenhouse gas (GHG) emission levels using 27-year dataset between the years 1990 and 2016. The annual GHG emissions data consisting of carbon dioxide, methane, nitrous oxide, and fluorinated gases have been used as inputs. In order to increase the accuracy and reliability, three different models namely, the Bayesian optimisation-based support vector regression (BO-SVR), three-layered feed-forward back-propagation neural network (BPNN), and multivariate linear regression (MLR) models were employed. The coefficient determination (R2) for the BO-SVR, BPNN and MLR models were determined as 0.9893, 0.9796, and 0.9766 in the training phase and 0.9795, 0.9629, and 0.9529 in the testing phase, respectively. The results showed that the BO-SVR model is found to be superior for the estimation of Turkey's health expenditures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.