Abstract

Computational modeling and numerical simulation of heart valve dynamics incorporating both fluid dynamics and valve structural replications has been challenging. In this study, we developed a double-coupled fluid-structure interaction (FSI) model using arbitrary lagrangian eulerian(ALE) and steered adaptive mesh(SAM). So we were looking to simulate transcatheter aortic valve (TAV) hemodynamic performance throughout entire cardiac cycles [1]. To reach this object, semi-real geometry of aorta and aortic polymeric valves has been created. At model inlet, left ventricular pressure and at the model outlet the elastic porous tube have been considered. Nonlinear finite element way and Sparse solver was utilized to couple fluid and solid equation. Consequently, extensive and comparative simulation were performed to investigate the impact of valve elasticity and valve positions on hemodynamics and solid parameters. Effective Orifice Area(EOA) also has been calculated [1]. The simulation results indicated that the lower of the elastic modulus cause to increase the EOA. Furthermore, the result of valve position showed, whenever the valve is closer to sinuses, a greater EOA and lower stresses impose on the leaflet are achievable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call