Abstract

Forming Limit Curve (FLC) is a well-known tool for the evaluation of failure in sheet metal process. However, its experimental determination and evaluation are rather complex. From theoretical point of view, FLC describes initiation of the instability not fracture. During the last years Digital Image Correlation (DIC) techniques have been developed extensively. Throughout this paper, all the measurements were done using DIC and as it is reported in the literature, different approaches to capture necking and fracture phenomena using Cross Section Method (CSM), Time dependent Method (TDM) and Thinning Method (TM) were investigated. Each aforementioned method has some advantages and disadvantages. Moreover, a cruciform specimen was used in order to cover whole FLC in the range between uniaxial to equi-biaxial tension and as an alternative for Nakajima test. Based on above-mentioned uncertainty about the fracture strain, some advanced numerical failure models can describe necking and fracture phenomena accurately with consideration of anisotropic effects. It is noticeable that in this paper, dog-bone, notch and circular disk specimens are used to calibrate Johnson-Cook (J-C) fracture model. The results are discussed for mild steel DC01.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.