Abstract

ZnTe/CdxZn1-xTe (0.2 ≤ x ≤ 1.0) heterostructures were fabricated by thermal evaporation method by using CdTe and ZnTe as source materials. The properties of heterostructures were analysed by X-ray diffraction (XRD), photoluminescence (PL), temperature dependent Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and I-V characterizations. Double diffraction peak in the diffractogram has confirmed bilayer with no or minimum diffusion across the junction. Effect of thermal expansion and an-harmonic coupling to the other phonon modes causing strain induced shift of the longitudinal optical modes were studied through low-temperature Raman spectra. The junction parameters such as barrier height, ideality factor and series resistance were extracted from I - V characteristics by applying various models. ZnTe/CdxZn1-xTe heterostructures having low barrier height and good photo response are explored in this work for the photodetector application. Sample having composition x = 0.8 showed higher response in the visible region with improved response at longer wavelengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.