Abstract

Incremental Sheet Forming (ISF) is a promising rapid prototyping technology used to form complex three-dimensional shapes. For forming a part with severely sloped regions, design of multi-stage deformation passes (intermediate shapes or preforms) before the final part, is widely adopted as a desirable and practical way to control the material flow in order to obtain a more uniform thickness distribution and avoid forming failure. However, a problem sometimes encountered in multi-pass forming is wrinkling deformation between two adjacent deformation passes. This may lead to forming process instability and even fracture. The overall quality of the final part may also deteriorate even if the part is formed successfully. In this paper, the wrinkling phenomenon in multi-pass incremental sheet forming is investigated by means of finite element analysis (FEA) and experimental tests to analyse the wrinkling formation mechanism. This research gives an insight into the optimized design of deformation passes in order to eliminate the unwanted wrinkling deformation in multi-pass incremental forming process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call