Abstract

Cement-stabilized dredged sediment (CDS) when used as a new road construction material cannot only solve the problem of abandoned sediment disposal, but also effectively save natural soil resources. This study aimed to evaluate the strength and permeability of CDS and establish corresponding prediction models from the perspective of a stabilization mechanism. The soil–water composition and pore size distribution were investigated by the nuclear magnetic resonance (NMR) technique. The results demonstrated that more liquid pore water inside the CDS specimen transformed into combined water with cement hydration. The amount of combined water, which essentially characterized the hydration process of cement, presented a linear relationship with log (t). The cementation and filling action of hydrates resulted in the transformation of large pores into smaller ones, hence the optimal pore size decreased with an increasing curing period and cement content. The stress–strain curves and hydraulic conductivity were determined based on unconfined compression and flexible wall penetration tests, respectively. The unconfined compressive strength increased exponentially with the amount of combined water, and the functional correlations of hydraulic conductivity and micropore parameters were established. The reliability of the NMR technique as a new method to study the microscopic evolution mechanism of the strength and permeability of CDS was further verified by scanning electron microscopy and mercury intrusion porosimetry tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.