Abstract

Abstract In high temperature engineering field, protection of metal components operating at high temperatures has been a problem since the attempts to realize high efficiency aero engines in the 1940s. Researchers have been working on finding a solution for this issue and thermally insulating the surface of the base metal component with a suitable high temperature material, generally a ceramic, is one solution. The Thermal Barrier Coatings, popular worldwide as TBCs have found wide spread applications in aerospace and automobile industry after its successful application in aerospace engines in mid 1970s. In the field of aerospace, generally a super alloy will be the substrate and in automobile field this process is very much suited on aluminium casting alloys, which is the raw material for high speed diesel engine cylinder blocks and pistons. Although a good quantity of research work on TBCs have been completed in the field of aerospace, the published literature on such coatings on Aluminium castings alloys are limited. Present research aims to throw some light in this grey area by plasma spray coating Aluminium-Silicon (Al-Si) substrates with popular Yttria Partially Stabilized Zirconia as top coat and underlying nickel aluminide bond coat. Al-Si alloys are widely used in automobiles. Experiments were conducted to evaluate the temperature drop across a 250 µm thick TBC at different ceramic surface temperatures and then validating the experimental results by simulation in ANSYS. Experimental results and simulated results showed a close match, thereby validating the findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.