Abstract

In this study, the effects of fin configurations and layouts on thermal and hydraulic performances in a printed circuit heat exchangers with supercritical liquefied natural gas as the working fluid are numerically studied, and the overall heat transfer performance is evaluated by the thermal performance factor. Firstly, the effect of three different airfoil configurations, that is, NACA 0024, NACA 0024 with vortex generator, and NACA 0024 with curved vortex generator (CVG) is investigated. The comparative results indicate that NACA 0024 and CVG combined configurations offer the best overall heat transfer performance. Furthermore, the effect of the CVG minimum transverse distance is analyzed in detail. The results show that for a given CVG configuration, the CVG minimum transverse distance should not be too small or too large, so that the longitudinal vortices (LVs) generated will not interact with each other and the LVs’ influences may reach a longer distance. The optimal CVG minimum transverse distance is 1.75 of maximum airfoil thickness. Finally, the effect of CVG attack angle is studied. The results indicate that the optimal CVG attack angle of combined configurations is 45° for improving the overall heat transfer performance, and an optimal CVG and airfoil fin arrangement is suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call