Abstract
Fracture of BCC metals is a temperature dependent process characterized by a temperature transition regime where material failure is the result of the competing action of two different mechanisms of rupture, namely, cleavage and ductile fracture. In this paper, two micromechanics based methodologies, the local approach and a non-linear CDM model, are used to model fracture processes in the temperature transition regime for a low alloy steel. The study revealed that approaching the nihil ductility temperature (NDT), the identification procedure for the material parameters needed in the local approach becomes no longer stable resulting in a non unique set of σ W and m values. This occurrence can be used to discriminate in the experimental data set those data failed in a non-complete brittle manner. Using m exponent equal to 4, a linear dependency, between σ W and K J , also in upper shelf regime, is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.