Abstract

Amorphous silicon-zinc-tin-oxide (a-SZTO) thin film transistors (TFTs) have been fabricated depending on the silicon ratio in channel layers. The a-SZTO TFT exhibited high electrical properties, such as high mobility of 23cm2V−1s−1, subthreshold swing of 0.74V/decade and ION/OFF of 2.8×108, despite of the addition of Si suppressor. The physical mechanism on the change of the sheet resistance and the contact resistance in a-SZTO TFT has been investigated and proposed closely related with the Si ratio. Both resistances were increased as increasing Si ratio, which clearly indicated that the role of Si is a carrier suppressor directly leading to the increase of channel and contact resistances. To explain the role of Si as a carrier suppressor, the conduction band offset mechanism has been also proposed depending on the change of carrier concentration in channel layer and at the interface between electrode and channel layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call