Abstract

The transport characteristics of cut tobacco as a typical biological wet slender particle were investigated in a pilot-scale rotary cylinder. Effect of solids and gas flow rate, moisture content of particles and rotating speed of cylinder was analyzed. The adaptability of the classical Friedman model for predicting average residence time of these type particles was also investigated. The result shows that the gas flow rate, moisture content of particles as well as rotating speed of cylinder have a significant influence on the axis transport velocity and forward step per cycle of cut tobacco in rotary cylinder. It’s difficult for Friedman model to accurately describe influence of gas flow rate and moisture content on transport of cut tobacco, which was associated with the particle characterize and influence of moisture content on the fluidity of particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call