Abstract

In the milling of titanium alloy, the distribution of milling force and its related law of change seriously affect the physical properties of workpiece materials, the stress distribution on a cutter’s rake face and the interaction between the workpiece, the cutter and the chip. This article reports on a study of the stress field distribution under the conditions of anti-friction and anti-wear when cutting titanium alloy with a micro-textured ball-end milling cutter. Milling test data were used to establish empirical models of milling force and the contact area between the cutter and the chip. Based on this, the force density function of the cutter coordinate system was obtained and the equivalent stress and displacement of the cutter were simulated and analyzed. This in turn provided the means to acquire the instantaneous stress and strain relating to the cutter at any time. Analysis of the simulation results shows that the position in which the stress and strain are concentrated on the cutter is consistent with actual processing. This confirms the accuracy of the force density function and provides the basis for further study of thermo-mechanical coupling behaviors when engaged in using micro-textured ball-end milling cutters for the cutting of titanium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call