Abstract

Path-dependent forming limits have been computed for sheet metals undergoing various combinations of plane stress loading conditions. This paper presents a theoretical model for prediction of stress-based forming limit curves (SFLC) based on the Marciniak and Kuczynski (MK) model. Acceptable agreement was observed between calculated forming limit curves (FLC) and experimental data for AISI-1012 steel (Molaei 1999) and AA-2008-T4 alloys (Graf and Hosford Metallurgical Trans 24A:2503–2512, 1993). In this paper, the path dependency of SFLCs predicted for different non-proportional loading histories has been investigated. For a range of prestrain values in different bilinear loading paths, the SFLC remains practically unchanged. However, some strain path dependency is observed for large values of prestrain (\( \bar{\varepsilon } \geqslant 0.35 \) for AISI-1012 steel) and for abrupt changes in strain path. Nevertheless, the SFLC remains a good failure criterion for virtual forming simulations because the path dependency of SFLCs is much less significant than that of strain-based FLCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.