Abstract

The equilibrium system is essential for the high-precision movement of the ultra-precision vertical axis. However, the complex assembly process makes orifice-throttling frictionless cylinders difficult to manufacture and prone to air hammering. Surface-throttling frictionless pneumatic cylinders effectively avoid these problems. This paper establishes an improved finite element method (FEM) model of a novel surface-throttling frictionless pneumatic cylinder to investigate its static performance. Furthermore, the static equilibrium calculation of the dual-cylinder system is concerned. The radial bearing capacity and support force requirements for the surface-throttling aerostatic bearings are obtained. The outcomes provide theoretical guidance for optimizing cylinder parameters. It ensures that the ultimately optimized cylinder meets the requirements for radial bearing capacity and support force of the ultra-precision vertical axis while minimizing air consumption. Finally, the accuracy of the proposed method is verified through computational fluid dynamics (CFD) calculation and experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call