Abstract

An experiment on reinforced concrete beams using four-point bending test during an ultrasonic test was conducted. Three beam specimens were considered for each water/cement ratio (WC) of 40% and 60%, with three reinforcement schedules named design A (comprising two top bars and two bottom bars), design B (with two bottom bars), and design C (with one bottom bar). The concrete beam had a size of 100 mm × 100 mm × 400 mm in length with a plain reinforcement bar of 9 mm in diameter. An ultrasonic test with pitch–catch configuration was conducted at each loading with the transducers oriented in direct transmission across the beams' length with recordings of 68 datasets per beam specimen. Recordings of ultrasonic test results and strains at the top and bottom surfaces subjected to multiple step loads in the experiment were done. After the collection of the data, feed-forward backpropagation artificial neural network (ANN) was used to investigate the sensitivity of the ultrasonic parameters to the mechanical load applied. Five input parameters were examined, as follows: neutral axis (NA), fundamental harmonic amplitude (A1), second harmonic amplitude (A2), third harmonic amplitude (A3), and peak-to-peak amplitude (PPA), while the output parameter was the percentage of ultimate load. Optimum models were chosen after training, validating, and testing 60 ANN models. The optimum model was chosen on the basis of the highest Pearson’s Correlation Coefficient (R) and soundness, confirming that it exhibited good behavior in agreement with theories. A classification of sensitivity was performed using simulations based on the developed optimum models. It was found that A2 and NA were sensitive to all WC and reinforcements used in the ANN simulation. In addition, the range of sensitivity of A2 and NA was inversely and directly proportional to the reinforcing bars, respectively. This study can be used as a guide in the selection of ultrasonic parameters to assess damage in concrete with low or high WC and varying reinforcement content.

Highlights

  • In modern infrastructures, structural health monitoring is essential to assess and diagnose the current situation before retrofit and repair commences

  • Pilot testing for plain concrete cubes of 150 mm size [5,20,22] and reinforced concrete beams were resulted from the material nonlinear response due to mechanical damage and not from the Results and to Discussion done in the2

  • This paper used experimental results from ultrasonic test with varying water/cement ratio (WC) and reinforcing bars tested under four-point bending test

Read more

Summary

Introduction

Structural health monitoring is essential to assess and diagnose the current situation before retrofit and repair commences. The common building material used is reinforced concrete. Reinforced concrete can be assessed on the basis of factors such as time, cost, and idle period. Researchers focus on developing non-destructive tests for the fast and economical assessment of a structure with better sensitivity to internal damage against load. Reinforced concrete comprises two main materials that, when combined together, perform well against aging and mechanical damage. The first material is concrete, which is very good in compression

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.