Abstract

AbstractThermogravimetry (TG), differential thermal analysis (DTA), and differential scanning calorimetry (DSC) have been used to examine the thermal behavior of Sn+KClO3, Sn+KNO3, and Sn+KClO4 pyrotechnic systems and the results were compared with thermal characteristics of individual constituents. TG curves for tin powder, heated alone in air, showed a relatively slow oxidation above 570 °C. From thermal results the decomposition temperatures of KClO3, KClO4, and KNO3, in nitrogen atmosphere, were measured at 472, 592 and 700 °C, respectively. For the Sn+KNO3 pyrotechnic system, the tin oxidation was completed within the range of 480 to 500 °C. Replacing KNO3 with KClO4 led to an increase of thermal stability of the pyrotechnic mixture. Among above‐mentioned pyrotechnic mixtures, Sn+KClO3 has the lowest ignition temperature at about 390 °C. The apparent activation energy (E), ΔG#, ΔH# and ΔS# of the combustion processes were obtained from the DSC experiments. Based on these kinetic data and ignition temperatures, the relative reactivity of these mixtures was found to obey in the following order: Sn+KClO3>Sn+KNO3>Sn+KClO4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.