Abstract

Abstract This study investigates the mean flow and radial heat-transfer behaviors in semiclosed rotating disk cavity within the canned reactor coolant pump. The flow in the semiclosed cavity contains the Stewartson type flow at inner region and the Batchelor type flow at outer region. The heat is radially transported from the outer rim of the semiclosed disk cavity to discharge-hole through the nondirect discharge (ND) portion of the superimposed flow from inlet. The effects of rotating Reynolds numbers, cavity aspect ratio and radial location of discharge-hole on the discharge ratio, pumping mass flow rate, local wall shear stress and radial heat-transfer coefficient are examined in the semiclosed rotating cavity flow, respectively. Based on the radial heat transfer behaviors of pumping secondary flow, an equivalent thermal network is proposed and validated by experiments, which can effectively predict the radial temperature distribution from the discharge hole to periphery with the viscous-heating and nonisothermal effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.