Abstract

An irreversible solar powered absorption refrigeration system is put forward, in which finite-rate heat transfer with the convection mode from the solar collector to the absorption refrigerator and the radiation-convection heat loss from the solar collector to the ambient, the internal irreversibility inside the working fluid are taken into account. On the basis of thermodynamic analysis and log mean temperature difference (LMTD) methods, the expression between the overall coefficient of performance (COP) of the solar powered absorption refrigeration system and the operating temperature of the solar collector is derived. The influences of heat loss of the solar collector, the irreversibility inside the working fluid, the isobaric temperature ratio, the ratio of heat-transfer coefficients on the optimal performance characteristic of the solar powered absorption refrigeration system are revealed. The results obtained in the present paper are helpful to the optimal parameter design of actual solar powered absorption refrigerators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.